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This document was made as a way to study the material from the spring semester complex
analysis qualifying course at Michigan State University, in spring of 2017. It serves as a
companion document to the “Theorems” review sheet for the same class. The textbook for
the course was Complex Function Theory, by Donald Sarason, and these notes closely follow
that text.
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1 Chapter 1: Complex Numbers

In this section, x, y denote real numbers.

Definition 1.1. Let z = x+ iy ∈ C. The real part of z is Re z = x.

Definition 1.2. Let z = x+ iy ∈ C. The imaginary part of z is Im z = y.

Definition 1.3. Let z = x+ iy ∈ C. The modulus of z, denoted |z|, is
√
x2 + y2.

Definition 1.4. Let z = r(cos θ + i sin θ) ∈ C. Then θ is a argument of z, denoted
θ = arg z. The principal argument of z is the argument in the interval (−π, π], denoted
Arg z.

Definition 1.5. The extended complex plane, denoted C, is the space C ∪ {∞}.

2 Chapter 2: Complex Differentiation

Definition 2.1. Let u : Rn → R. The function u is of class Ck if the first k derivatives of
u exist and are continuous.

Definition 2.2. Let f : G→ C where G ⊂ C is open. The function f is differentiable at
z0 ∈ G if the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists. When it exists, it is called f ′(z0).

Definition 2.3. Let f : G→ C where G ⊂ C is open. The function f is holomorphic on
G if it is differentiable at every z0 ∈ G.

Definition 2.4. If f : C→ C is holomorphic, then f is called entire.

Definition 2.5. Let f = u + iv be a complex valued function. The differential operators
∂
∂x
, ∂
∂y

are defined by

∂

∂x
f =

∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
∂

∂y
f =

∂f

∂y
=
∂u

∂y
+ i

∂v

∂y

Note that they are linear operators. In terms of these, we define the differential operators
∂
∂z
, ∂
∂z

by

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
=⇒ ∂

∂z
f =

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
=⇒ ∂

∂z
f =

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
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Note that ∂
∂z

and ∂
∂z

are linear operators. Given this, we have the equivalent formulation,

∂

∂x
=

∂

∂z
+

∂

∂z
∂

∂y
= i

(
∂

∂z
− ∂

∂z

)
Definition 2.6. A curve in C is a continuous map γ : I → C, where I is any interval in R.

Definition 2.7. A curve γ : I → C is differentiable at t0 if the limit

lim
t→t0

γ(t)− γ(t0)

t− t0

exists. When it exists, this limit is denoted γ′(t0). If γ is differentiable at all t0 ∈ I, then γ
is differentiable. If γ is differentiable and γ′ : I → C is continuous, then γ is called C1.

Definition 2.8. A curve γ : I → C is regular at t0 if it is differentiable and if γ′(t0) 6= 0.
If γ is C1 and regular at every t0 ∈ I, then γ is a regular curve.

Definition 2.9. Let γ : I → C be a curve that is regular at t0. The direction of γ at t0 is
arg γ′(t0). We can also specify the direction with the unit tangent vector γ′(t0)

|γ′(t0)| .

Definition 2.10. Let γ1, γ2 be curves in C that intersect at γ1(t1) = γ2(t2). The angle
between γ1 and γ2 is the angle arg γ′2(t2)− arg γ′1(t1) (mod 2π).

Definition 2.11. Let f be a complex-valued function defined on an open set G, and let
z0 ∈ G. Then f is conformal at z0 if for any curves γ1, γ2 such that γ1(t1) = γ2(t2) = z0

and γj is regular at tj, the angle between f ◦ γ1 and f ◦ γ2 is the same as the angle between
γ1 and γ2.

Definition 2.12. A function f : G→ C is harmonic if is C2 and satisfies

∂2f

∂x2
+
∂2f

∂y2
= 0

That is, f is in the kernel of the linear operator ∂2

∂x2
+ ∂2

∂y2
.

Definition 2.13. Let u, v : G→ R where G ⊂ C is open. The functions u, v are harmonic
conjugates if they satisfy the Cauchy-Riemann equations,

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

3 Chapter 3: Linear Fractional Transformations

Definition 3.1. A linear fractional transformation is a function φ : C → C given by
z 7→ az+b

cz+d
where a, b, c, d ∈ C, so that ad − bc 6= 0. (This rules out φ being constant.) If

c = 0, we define φ(∞) =∞, and if c 6= 0 then φ(∞) = a/c and φ(−d/c) =∞.
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Definition 3.2. Consider the space C2 under the equivalence relation (z1, z2) ∼ λ(z1, z2) for
λ ∈ C \ {0}. The space C2/ ∼ is complex projective space, denoted CP1.

Definition 3.3. Let

M =

(
a b
c d

)
be a non-singular matrix with complex entries, that is, M ∈ GL(2,C). The linear fractional
transformation induced by M is the map z 7→ az+b

cz+d
.

Definition 3.4. Let z1, z2, z3, z4 be distinct points in C. The cross ratio, denoted (z1, z2; z3, z4)
is the image of z4 under the unique linear fractional transformation φ so that φ(z1) =
∞, φ(z2) = 0, and φ(z3) = 1.

Definition 3.5. A homothetic map or dilation is a linear fractional transformation of
the form z 7→ kz for some k > 0. It is induced by a matrix of the form(

k 0
0 1

)
where k > 0.

Definition 3.6. A rotation is a linear fractional transformation of the form z 7→ λz where
|λ| = 1. It is induced by a matrix of the form(

λ 0
0 1

)
where |λ| = 1.

Definition 3.7. A translation is a linear fractional transformation of the form z 7→ z + b
where b ∈ C. It is induced by a matrix of the form(

1 b
0 1

)
where b ∈ C.

Definition 3.8. The inversion map is the linear fractional transformation z 7→ 1
z
. It is

induced by the matrix (
0 1
1 0

)
Definition 3.9. A clirlce is the image in C of a circle on S2 under the stereographic
projection. Note that a clircle is either a circle in C2 or a line in C2 union the point at
infinity.
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4 Chapter 4: Elementary Functions

Definition 4.1. Let z = x + iy. The complex exponential function is defined by exp :
C→ C by exp z = ez = ex(cos y + i sin y).

Definition 4.2. The trigonometric and hyperbolic trigonometric functions are defined by

cos z =
eiz + e−iz

2
sin z =

eiz − e−iz

2
tan z =

sin z

cos z

sec z =
1

cos z
csc z =

1

sin z
cot z =

1

tan z

cosh z =
ez + e−z

2
sinh z =

ez − e−z

2
tanh z =

sinh z

cosh z

cosh z =
1

coth z
sinh z =

1

sinh z
coth z =

1

tanh z

Definition 4.3. Let z ∈ C \ {0}. A logarithm of z is a complex number w so that ew = z.
(Note that there are infintely many such w for a given z.)

Definition 4.4. Let G be an open connected subset of C\{0}. A branch of the argument
is a continuous function α such that α(z) = arg z for z ∈ G.

Definition 4.5. Let G be an open connected subset of C\{0}. A branch of the logarithm
is a continuous function ` so that e`(z) = z for z ∈ G.

Note: Given a set G, there may not exist a branch of arg or log.

Definition 4.6. The principal branch of arg is Arg z, which exists on C \ (−∞, 0].

Definition 4.7. The principal branch of log is Log z, defined by Log z = ln |z|+ iArg z.

Definition 4.8. Let G be an open connected set of C, and let f be a nonvanishing holo-
morphic function in G. A branch of log f is a continuous function g : G → C so that
f(z) = eg(z) for z ∈ G. (Note: A branch of log is the special case f(z) = z.)

Definition 4.9. Let f be holomorphic in G. The logarithmic derivative of f is f ′

f
.

Definition 4.10. Let G be an open connected subset of C and let f be a nonvanishing
holomorphic function on G. Let n ∈ N. A branch of f1/n is a continuous function h in G
so that h(z)n = f(z) for all z ∈ G.

Definition 4.11. Let z, w ∈ C. We define the expression zw to mean the set of values of
ew log z.

5 Chapter 5: Power Series

Definition 5.1. A infinite series is a summation
∑∞

n=0 cn with cn ∈ C.

Definition 5.2. The infinite series
∑∞

n=0 cn converges if limN→∞
∑N

n=0 cn converges and is
finite. If it converges, this limit is the sum of the series.
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Definition 5.3. The series
∑∞

n=0 cn converges absolutely if
∑∞

n=0 |cn| converges.

Definition 5.4. Let gn be a sequence of complex-valued functions defined in G. The se-
quence converges (pointwise) if limn→∞ gn(z) exists and is finite for each z ∈ G.

Definition 5.5. Let gn be a sequence of complex-valued functions defined in G with point-
wise limit g. The sequence converges uniformly to g on S if for every ε > 0, there exists
N ∈ N so that

n ≥ N =⇒ |g(z)− gn(z)| < ε, ∀z ∈ S

Definition 5.6. Let gn be a sequence of complex-valued functions defined in G. The se-
quence is uniformly Cauchy on S if for every ε > 0 there exists N ∈ N so that

n,m ≥ N =⇒ |gn(z)− gm(z)| < ε, ∀z ∈ S

Definition 5.7. Let gn be a sequence of complex-valued functions defined in G. The se-
quence is converges locally uniformly in G if each point in G has an open neighborhood
in which the sequence converges uniformly. Equivantly, it converges locally uniformly if it
converges uniformly on each compact subset of G.

Definition 5.8. Let fn be a sequence of complex-valued functions. The series
∑∞

k=0 fn
converges if the sequence of partial sums converges. It converges unformly if the sequence
of partial sums converges uniformly. It converges locally uniformly if the sequence of
partial sums converges locally uniformly.

Definition 5.9. A power series is a series of the form
∑∞

n=0 an(z − z0)n where z0, ai are
complex constants. If a power series converges to a function f on a set G, then the series
represents f on G.

Definition 5.10. Let
∑∞

n=0 an(z− z0)n be a power series. The radius of convergence for
the series the supremum over all R so that the series converges on the disk |z − z0| < R.

Definition 5.11. Let an be a sequence of real numbers. The lim sup and lim inf of the
sequence are

lim sup
n→∞

an = lim
n→∞

(sup{ak : k ≥ n})

lim inf
n→∞

an = lim
n→∞

(inf{ak : k ≤ n})

Note that these limits always exist, since the sequence of suprema/infima are decreas-
ing/increasing sequences respectively.

Definition 5.12. Let
∑∞

n=0 an(z− z0)n and
∑∞

n=0 bn(z− z0)n be power series with the same
center. The Cauchy product is the power series

∞∑
n=0

(
n∑
k=0

akbn−k

)
(z − z0)n
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6 Chapter 6: Complex Integration

Definition 6.1. Let [a, b] ⊂ R. A function φ : [a, b] → C is piecewise continuous if it
is continuous at all but finitely many points of [a, b] and has finite one-sided limits at each
discontinuity.

Definition 6.2. Let φ : [a, b]→ C be piecewise continuous. Then the integrals∫ b

a

Reφ(t)dt

∫ b

a

Imφ(t)dt

are defined as usual Riemann integrals of real functions. The integral of φ over [a, b] is
defined by ∫ b

a

φ(t)dt =

∫ b

a

Reφ(t)dt+ i

∫ b

a

Imφ(t)dt

Definition 6.3. A function φ : [a, b] → C is differentiable at t0 ∈ [a, b] if Reφ and Imφ
are differentiable at t0. If φ is differentiable at t0, then its derivative is defined to be

φ′(t0) = (Reφ)′(t0) + i(Imφ)′(t0)

Definition 6.4. A function φ : [a, b]→ C is piecewise C1 if it is continuous, differentiable
at all but finitely many points, has a continuous derivative where the derivative exists, and
the derivative has finite one-sided limits at its discontinuities.

Definition 6.5. Let γ : [a, b] → C be a piecewise C1 curve. A reparametrization of γ is
a curve γ1 = γ ◦ β where β : [c, d]→ [a, b] is strictly increasing, piecewise C1, and surjective.

Definition 6.6. Let γ : [a, b]→ C be a piecewise C1 curve. The length of γ is defined as

L(γ) =

∫ b

a

|γ′(t)|dt

(Note: This is not an intrinsic geometric definition, since it appears to depend on the
parametrization of γ. However, one can show that it does not depend on the parametriza-
tion.)

Definition 6.7. Let G ⊂ C, and f : G → C. Let γ : [a, b] → G be a piecewise C1 curve.
The integral of f over γ is the integral∫

γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt

Definition 6.8. Let z1, z2 ∈ C. Then [z1, z2] is the line segment with endpoints z1, z2,
directed from z1 to z2. One common parametrization of this is γ : [0, 1] → [z1, z2] given by
γ(t) = (1− t)z1 + tz2.

Definition 6.9. Let γ : [a, b]→ C be a curve. The reverse of γ is the curve −γ : [−b,−a]→
C defined by (−γ)(t) = γ(−t). This reverses the direction in which γ traverses the image
curve.
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7 Chapter 7: Core Versions of Cauchy’s Theorem

Definition 7.1. Let z1, z2, z3 ∈ C. The triangle T (z1, z2, z3) is the set [z1, z2] ∪ [z2, z3] ∪
[z3, z1].

Definition 7.2. A subset of C is convex if for every z1, z2 ∈ C the line segment [z1, z2] is
contained in C.

Definition 7.3. A subset G of C is star shaped if there exists z0 ∈ G so that [z0, z] ⊂ G
for every z ∈ G. (Note that every convex set is star shaped, but the converse is false.)

Definition 7.4. Let f : G→ C be holomorphic. A primitive of f is a holomorphic function
F : G→ C such that F ′ = f .

Definition 7.5. Let γ : [a, b] → C be a piecewise C1 curve and let φ : im γ → C be
continuous. The Cauchy integral of φ over γ is the function f : C \ im γ → C defined by

f(z) =

∫
γ

φ(w)

w − z
dw

Definition 7.6. Let f : G → C be holomorphic, and let z0 ∈ G so that f(z0) = 0. The
point z0 is a zero of order m if f (n)(z0) = 0 for n = 0, . . . ,m− 1 and f (m) 6= 0.

8 Laurent Series and Isolated Singularities

Note: Prof Schenker presented this material in a different order in class, giving a different
definition for singularities, but it all turns out to be logically equivalent.

Definition 8.1. A Laurent series is a series of the form

∞∑
n=−∞

an(z − z0)n

The series is defined to converge if both the series

∞∑
n=0

an(z − z0)n
∞∑
n=1

a−n(z − z0)−n

converge. When it converges, the sum of the series is

lim
N→∞

N∑
n=−N

an(z − z0)n

The series
∞∑
n=1

a−n(z − z0)−n

is the principal part of the Laurent series.
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Definition 8.2. A punctured disk centered at z0 is an open annulus 0 < |z − z0| < R.

Definition 8.3. Let f be holomorphic in G. A point z0 ∈ G is an isolated singularity of
f if z0 6∈ G but G contains a punctured disk centered at z0.

Definition 8.4. Let f be holomorphic in G with an isolated singularity at z0, and let∑∞
n=−∞ an(z − z0)n be a Laurent series for f centered at z0.

1. z0 is a removable singularity if an = 0 for all n < 0. In this case, f can be extended
to a holomorphic function on G ∪ {z0} by defining f(z0) = a0.

2. z0 is a pole of order m for some m ∈ N if a−m 6= 0 but an = 0 for n < −m. That is,
the principal part of the Laurent series is eventually zero, and hence forms a rational
function.

3. z0 is an essential singularity if it is not one of the above. That is, the principal part
of the Laurent series has infinitely many nonzero terms.

Definition 8.5. Let f be holomorphic with an isolated singularity at z0. The residue of f
at z0, denoted resz0 f , is the coefficient of (z − z0)−1 in the Laurent expansion of f near z0.

9 Cauchy’s Theorem

Definition 9.1. Let γ : [a, b] → C be piecewise C1, and let f : γ([a, b]) → C \ {0} be
continuous. We know there exists a continuous ψ : [a, b] → C \ {0} so that f ◦ γ = eψ.
The increment in log f on γ, denoted ∆(log f, γ) is ψ(b) − ψ(a). The increment in
arg f on γ, denoted ∆(arg f, γ), is Im(∆(log f, γ). (Note that if γ is a closed curve, then
∆(arg f, γ) = −i∆(log f, γ).

Definition 9.2. Let γ : [a, b]→ C be a closed curve, and let z0 be a point not in the trace
of γ. The winding number of γ around z0 is 1

2π
∆(arg(z − z0)γ). This is also called the

index of z0 with respect to γ, and denoted indγ(z0).

Definition 9.3. A contour is a formal sum

Γ =

p∑
j=1

njγj

where γj are piecewise C1 closed curves and nj are integers. We can think of any curve γ as
a contour 1γ.

Definition 9.4. Let Γ =
∑

j njγj be a contour and let f be a continuous complex valued
function defined on each γj. Then we define the integral over Γ by∫

Γ

f(z)dz =

p∑
j=1

nj

∫
γj

f(z)dz
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Definition 9.5. We define an equivalence relation on the set of contours by Γ ∼ Γ′ if for
every continuous function f , ∫

Γ

f(z)dz =

∫
Γ′
f(z)dz

We do not distinguish between contours that are equivalent in this way.

Definition 9.6. Let Γ =
∑

j njγj and Γ′ =
∑

j n
′
jγj be contours. The sum is

Γ + Γ′ =

p∑
j=1

(nj + n′j)γj

This binary operation gives an abelian group structure to the set of equivalence classes of
contours.

Definition 9.7. Let Γ =
∑

j njγj be a contour and let z0 ∈ C be a point not on Γ. The
winding number of Γ around z0 is

indΓ(z0) =

p∑
j=1

nj indγj(z0)

Definition 9.8. Let Γ =
∑

j njγj be a contour. The interior of Γ is the set

{z ∈ C \ Γ : indΓ(z) 6= 0}

The exterior of Γ is the set
{z ∈ C \ Γ : indΓ(z) = 0}

Note that both the interior and exterior of Γ are open sets. Also note that the interior
is bounded, and the exterior is unbounded. Also, the boundary points of the interior and
exterior lie in Γ.

Definition 9.9. A contour Γ is simple if indΓ(z) is zero or one for every z ∈ C \ Γ.

Definition 9.10. Let G ⊂ C be open. Two closed curves γ0, γ1 : [0, 1]→ G are homotopic
if there is a continuous map γ : [0, 1]× [0, 1]→ G so that γ(t, 0) = γ0(t), γ(t, 1) = γ1(t), and
γ(0, s) = γ(1, s) for all s, t.

10 Riemann Mapping Theorem

Definition 10.1. A domain is a nonempty connected open subset of C.

Definition 10.2. A domain G ⊂ C is simply connected if C \ G is connected. (Note:
This is equivalent to usual topological simple connectedness.)

Definition 10.3. A univalent holomorphic function is injective.

Definition 10.4. Two domains G1, G2 ⊂ C are conformally equivalent if there is a
univalent holomorphic function f : G1 → C such that f(G1) = G2. (Note: This is an
equivalence relation on domains in C.)
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Definition 10.5. Let X be a topological space. Then C(X) is the space of continuous
functions f : X → R.

Definition 10.6. Let X be a topological space. A family of functions F ⊂ C(X) is equicon-
tinuous if for every x ∈ X and ε > 0, there exists a neighborhood Ux of x such that

y ∈ Ux and f ∈ F =⇒ |f(x)− f(y)| < ε

Definition 10.7. Let X be a topological space. A family of functions F ⊂ C(X) is point-
wise bounded if for every x ∈ X,

sup
f∈F
{|f(x)|} <∞

Definition 10.8. A family {fi : G→ C}i∈I is uniformly bounded if there exists M ∈ R
so that

|fi(z)| ≤M

for all i ∈ I and all z ∈ G.

Definition 10.9. A family {fi : G→ C}i∈I of functions is locally uniformly bounded if
each point z ∈ G has a neighborhood in which the family is uniformly bounded. Equivalently,
the family is locally uniformly bounded if it is uniformly bounded on each compact subset
of the domain.

Definition 10.10. A family {fi : G→ C}i∈I of functions is normal if every sequence from
the family has a locally uniformly convergent subsequence.
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